Rydberg Tools
Rydberg-Specific Functions
This page documents functions specific to Rydberg atom systems in RobustGRAPE.jl.
Hamiltonian Functions
RobustGRAPE.RydbergTools.rydberg_hamiltonian_symmetric_blockaded
— Functionrydberg_hamiltonian_symmetric_blockaded(ϕ::Real, ϵ::Real, δ::Real)
Constructs the Hamiltonian for a symmetric Rydberg-blockaded two-atom system.
Basis
|00⟩, |01⟩, |11⟩, |0r⟩, |W⟩
where |W⟩ = (|1r⟩ + |r1⟩)/√2
Parameters
ϕ::Real
: Phase of the driving fieldϵ::Real
: Relative amplitude deviation parameterδ::Real
: Detuning of the Rydberg state
Mathematical form
\[H = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(1+\epsilon)e^{-i\phi}}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{(1+\epsilon)e^{-i\phi}}{\sqrt{2}} \\ 0 & \frac{(1+\epsilon)e^{i\phi}}{2} & 0 & \delta & 0 \\ 0 & 0 & \frac{(1+\epsilon)e^{i\phi}}{\sqrt{2}} & 0 & \delta \end{pmatrix}\]
Returns
- Matrix representing the Hamiltonian in the symmetric basis described above
RobustGRAPE.RydbergTools.rydberg_hamiltonian_full_blockaded
— Functionrydberg_hamiltonian_full_blockaded(ϕ::Real, ϵ::Real, δ::Real)
Constructs the Hamiltonian for a fully-described Rydberg-blockaded two-atom system.
Basis
|00⟩, |01⟩, |10⟩, |11⟩, |0r⟩, |r0⟩, |W'⟩
where |W'⟩ = (|1r⟩ + |r1⟩)/√2
Parameters
ϕ::Real
: Phase of the driving fieldϵ::Real
: Relative amplitude deviation parameterδ::Real
: Detuning of the Rydberg state
Mathematical form
\[H = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(1+\epsilon)e^{-i\phi}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(1+\epsilon)e^{-i\phi}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{(1+\epsilon)e^{-i\phi}}{\sqrt{2}} \\ 0 & \frac{(1+\epsilon)e^{i\phi}}{2} & 0 & 0 & \delta & 0 & 0 \\ 0 & 0 & \frac{(1+\epsilon)e^{i\phi}}{2} & 0 & 0 & \delta & 0 \\ 0 & 0 & 0 & \frac{(1+\epsilon)e^{i\phi}}{\sqrt{2}} & 0 & 0 & \delta \end{pmatrix}\]
Returns
- Matrix representing the Hamiltonian in the basis described above
RobustGRAPE.RydbergTools.rydberg_hamiltonian_full
— Functionrydberg_hamiltonian_full(ϕ::Real, Ω1::Real, Ω2::Real, δ1::Real, δ2::Real, B::Real)
Constructs the full Hamiltonian for a two-atom Rydberg system without symmetry constraints.
Basis
|00⟩, |01⟩, |10⟩, |11⟩, |0r⟩, |r0⟩, |1r⟩, |r1⟩, |rr⟩
Parameters
ϕ::Real
: Phase of the driving fieldΩ1::Real
: Rabi frequency for the first atomΩ2::Real
: Rabi frequency for the second atomδ1::Real
: Detuning for the first atomδ2::Real
: Detuning for the second atomB::Real
: Rydberg-Rydberg blockade shift
Mathematical form
\[H = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\Omega_1 e^{-i\phi}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\Omega_2 e^{-i\phi}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\Omega_1 e^{-i\phi}}{2} & \frac{\Omega_2 e^{-i\phi}}{2} & 0 \\ 0 & \frac{\Omega_1 e^{i\phi}}{2} & 0 & 0 & \delta_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\Omega_2 e^{i\phi}}{2} & 0 & 0 & \delta_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\Omega_1 e^{i\phi}}{2} & 0 & \delta_1 & 0 & \frac{\Omega_2 e^{-i\phi}}{2} \\ 0 & 0 & 0 & 0 & 0 & \frac{\Omega_2 e^{i\phi}}{2} & 0 & \delta_2 & \frac{\Omega_1 e^{-i\phi}}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\Omega_2 e^{i\phi}}{2} & \frac{\Omega_1 e^{i\phi}}{2} & \delta_1 + \delta_2 + B \end{pmatrix}\]
Returns
- Matrix representing the Hamiltonian in the full basis described above
Gate Functions
RobustGRAPE.RydbergTools.cz_with_1q_phase_symmetric
— Functioncz_with_1q_phase_symmetric(θ::Real)
Constructs the CZ gate with additional single-qubit phase in the symmetric subspace.
Basis
|00⟩, |01⟩, |11⟩, |0r⟩, |W⟩
(same as in rydberg_hamiltonian_symmetric_blockaded
)
Parameters
θ::Real
: Single-qubit phase parameter
Mathematical form
\[U = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & e^{i\theta} & 0 & 0 & 0 \\ 0 & 0 & e^{i(2\theta+\pi)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}\]
The diagonal structure encodes a CZ gate with additional single-qubit phase rotations.
Returns
- Diagonal matrix representing the CZ gate with phase rotations
RobustGRAPE.RydbergTools.cz_with_1q_phase_full
— Functioncz_with_1q_phase_full(θ::Real; rydberg_dimension::Int = 5)
Constructs the CZ gate with additional single-qubit phase in the full computational basis.
Basis
|00⟩, |01⟩, |10⟩, |11⟩, |0r⟩, |r0⟩, |1r⟩, |r1⟩, |rr⟩
(same as in rydberg_hamiltonian_full
)
Parameters
θ::Real
: Single-qubit phase parameterrydberg_dimension::Int=5
: Dimension of the Rydberg subspace (optional, default: 5)
Mathematical form
\[U = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{i\theta} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{i\theta} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{i(2\theta+\pi)} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}\]
The diagonal structure encodes a CZ gate with additional single-qubit phase rotations.
Returns
- Diagonal matrix representing the CZ gate with phase rotations in the full basis
Utility Functions
RobustGRAPE.RydbergTools.unwrap_phase
— Functionunwrap_phase(ϕ)
Unwraps a sequence of phase values by removing jumps greater than π.
Adjusts phase values to maintain continuity across the 2π boundary, eliminating artificial discontinuities in phase data while preserving the actual phase evolution. Particularly useful for plotting phase values to avoid discontinuous jumps.
Parameters
ϕ
: Array of phase values to unwrap
Returns
- An array of unwrapped phase values with the same length as the input